Invivo₂ 300

UM-010

Invivo₂ 300 User Manual

Affix Serial Number Sticker Here
Invivo\textsubscript{2} 300

Product Summary

Baker Ruskinn’s Invivo\textsubscript{2} hypoxia workstation allows you to isolate cells in a chamber that accurately maintains and controls temperature, humidity, oxygen and carbon dioxide. With the Invivo\textsubscript{2}, you can study even the most complex cell interactions under perfect microaerophilic or anaerobic conditions. The Invivo\textsubscript{2} 300 is tailored to interface with the ICO\textsubscript{2}N\textsubscript{2}IC Advanced Gas Mixing System.

Features and Benefits

- Quick and easy direct access with the gloveless, cuffed Ezee Sleeve system.
- Single plate entry system (SPES) - standard on most models, this mailbox-like slot allows quick side entry or exit of individual plates, bypassing the interlock cycling process.
- Read plates easily without exposure to oxygen - energy-saving lighting provides perfect illumination.
- Up to 180 90mm plate capacity
- Petri dish holders for quick plate transfer included.
- Interlock transfer 18 plates in 35 seconds.
- Utilised with the ICO\textsubscript{2}N\textsubscript{2}IC Advanced Gas Mixing System to offer a microaerophilic environment in which to grow facultative anaerobes.
- Optimum cell environment
 - Accurate temperature control - from ambient + 5°C to 45°C.
 - Accurate and automated humidity control - no dry spots.
 - Palladium catalyst maintains anaerobic environment - anaerobic colour-indicator strips verify anoxic conditions.
 - Ezee Sleeve system allows access without disrupting atmosphere within the chamber.
- Economic and reliable long-term savings
 - Standard dual gas operation - low gas consumption and running costs.
 - Lower cost per plate compared to anaerobic jars.
 - Minimal maintenance and downtime - with annual or biennial preventative maintenance kits available.

The ICO\textsubscript{2}N\textsubscript{2}IC provides accurate control over O\textsubscript{2} (0.1% - 20.9% in 0.1% increments, can reach 23.0% using separate 25% O\textsubscript{2} cylinder) and CO\textsubscript{2} (0.1% - 30% in 0.1% increments).

Note. The use of the word Interlock in this manual is medical terminology, and refers to the environmental working area between both chambers. It does not refer to the engineering safety interlock switch mechanism.
Invivo2 300

Table of Contents

Product Summary ... 2

Features and Benefits ... 2

1. Overview ... 6
 1.1 Safety Instructions ... 6
 1.2 Regulatory compliance ... 7
 1.3 Symbols ... 7
 1.4 Installation and relocation ... 8
 1.5 Weight and dimensions ... 9

2. Gas and electrical supply requirement .. 10
 2.1 Gas supply requirements ... 10
 2.2 Gas regulator requirements ... 10
 2.3 Electrical supply requirements .. 10
 2.4 Voltage and frequency requirements .. 10
 2.5 Power consumption .. 10
 2.6 Powering the workstation ... 11

3. Workstation overview .. 12
 3.1 Workstation layout ... 12
 3.2 Component layout ... 12
 3.2.1 Front view .. 12
 3.2.2 Rear view .. 13
 3.2.3 Left side view – Standard humidifier ... 14
 3.2.4 Left side view – Ultrasonic humidifier ... 15
 3.2.5 Right side view ... 16
 3.3 Control system layout .. 17
 3.3.1 Control panel ... 17
 3.3.2 Temperature controller .. 18
 3.3.3 Port selector knob controller .. 18
 3.3.4 Interlock inner door control panel ... 19
 3.3.5 Foot switch control panel .. 19
 3.3.6 Power entry panel ... 20

4. Temperature and humidity control .. 21
 4.1 Temperature control .. 21
 4.2 Setting the temperature; ... 21
Invivo² 300

4.3 Humidity control .. 21
 4.3.1 Humidity control overview .. 21
 4.3.2 Humidistat humidity control ... 21

5. Environmental gas composition control .. 21

6. Using the workstation chamber .. 22
 6.1 Using the interlock ... 22
 6.1.1 Interlock overview .. 22
 6.1.2 Opening the interlock outer door ... 22
 6.1.3 Opening the interlock inner door ... 23
 6.1.4 Transferring material into the workstation chamber via the interlock 23
 6.1.5 Removing material from the workstation chamber via the interlock 23
 6.2 Hand access to the main chamber ... 24
 6.2.1 Ezee Sleeve overview ... 24
 6.2.2 Entering the workstation chamber using the Ezee Sleeves 25
 6.2.3 Exiting the workstation chamber using the Ezee Sleeves ... 26
 6.2.4 Arm gas displacement volume and pressure changes .. 26
 6.3 Single Plate Entry System (SPES) .. 27
 6.3.1 SPES overview .. 27
 6.3.2 Using the SPES .. 27
 6.4 Internal power socket .. 28
 6.5 Internal lights .. 28
 6.6 Rear shelf .. 29
 6.7 Optional extras .. 30
 6.7.1 Cable gland .. 30
 6.7.2 Universal cable gland ... 30
 6.7.3 Gas sample port .. 31
 6.7.4 Vacuum port ... 31
 6.8 Online video user guides .. 32

7. Cleaning and maintenance ... 33
 7.1 Cleaning the workstation ... 33
 7.1.1 Cleaning agents .. 33
 7.1.2 Cleaning procedure – during and after each use ... 33
 7.1.3 Cleaning procedure – deep clean ... 34
 7.2 Maintaining the workstation – End user maintenance ... 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.1</td>
<td>Filling the pressure relief/ humidifier tank</td>
<td>35</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Replacing an Ezee Sleeve</td>
<td>36</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Replacing detox sachets</td>
<td>37</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Installing/ replacing a catalyst sachet</td>
<td>38</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Replacing the mains plug fuse – UK users only</td>
<td>39</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Replacing the mains fuses</td>
<td>40</td>
</tr>
<tr>
<td>7.3</td>
<td>Service requirements</td>
<td>41</td>
</tr>
<tr>
<td>7.4</td>
<td>Spare parts and accessories</td>
<td>41</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Overview</td>
<td>41</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Spare parts and cleaning agents</td>
<td>42</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Accessories</td>
<td>42</td>
</tr>
<tr>
<td>7.5</td>
<td>Workstation malfunction</td>
<td>43</td>
</tr>
<tr>
<td>7.6</td>
<td>Common problems and solutions</td>
<td>43</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Workstation general problems</td>
<td>43</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Interlock problems</td>
<td>44</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Gas mixer and gas consumption problems</td>
<td>45</td>
</tr>
<tr>
<td>8.</td>
<td>Warranty information</td>
<td>46</td>
</tr>
<tr>
<td>9.</td>
<td>Disposal information</td>
<td>47</td>
</tr>
</tbody>
</table>
1. Overview
Please read this manual carefully to familiarise yourself with the operation and maintenance of the Invivo\textsubscript{2} 300 workstation. Note: The workstation should be located in a well-ventilated area.

1.1 Safety Instructions
For your safety, the safety of others using the workstation and those around you;

- The covers on both ends and the top of the workstation must not be removed by anyone other than a qualified service engineer. There are no end user serviceable parts within these covers.
- The AC Mains outlet that the Invivo\textsubscript{2} 300 workstation is connected to, MUST not be obstructed by the Invivo\textsubscript{2} 300 workstation or any other equipment, and MUST be accessible in case of emergency. In case of emergency, disconnect the Invivo\textsubscript{2} 300 workstation from the AC Mains Outlet.
- In case of damage to the Invivo\textsubscript{2} 300 workstation, disconnect the Invivo\textsubscript{2} 300 workstation from the AC Mains Outlet and contact your local distributor for advice.
- The workstation must be connected to a protective earth.
- Only the power cord supplied with the workstation should be used to connect the workstation to the mains supply.
- Only Ruskinn Technology Limited replacement parts should be used.
- Gas regulators must be used for each gas supply. A 2 stage regulator should be used for a bottled gas supply. The maximum supply pressure permissible is 4 bar gauge.
- The maximum permissible concentration of Hydrogen in the anaerobic mixed gas is 5.5% Hydrogen.
- The mains supply voltage fluctuations must not exceed +/- 10% of the nominal mains voltage.
- Only the gasses specified in this manual may be used.
- The maximum power rating of the internal socket must not be exceeded.
- The exhaust valve outlet must not be covered or blocked.
- The humidifier screw cap must not be covered or blocked.
- The humidifier/ pressure relief tank must not be overfilled.
- The cooling fan covers and cooling vents must not be covered or blocked.
- The workstation should not be lifted by the glove ports, the interlock or the Single Plate Entry System.
- If an Uninterruptable Power Supply (UPS) system is used, both the Invivo\textsubscript{2} 300 workstation and the IC\textsubscript{O}_{2}\textsubscript{N}_{2}\textsubscript{IC} must be connected to the Uninterruptable Power Supply (UPS) system.
- The weight limit for the interlock floor tray is 4kg.
- The weight limit for the rear shelf is 5.5kg. The weight must be evenly distributed.
- The workstation must be disconnected from the mains supply before removing the front cover.
- The spot light should not be used continuously for a period of more than 10 minute. The spot light should be allowed to cool for a period of 10 minutes after each use.
- The use of Radioactive materials in the Invivo\textsubscript{2} 300 is strictly prohibited.

FAILURE TO ADHERE TO THESE SAFETY INSTRUCTIONS COULD CAUSE SERIOUS INJURY AND WILL INVALIDATE THE WORKSTATION WARRANTY. RUSKINN TECHNOLOGY LIMITED ACCEPTS NO RESPONSIBILITY FOR ANY ACCIDENT, INJURY OR LOSS CAUSED BY UNSAFE OPERATION OF THE WORKSTATION
1.2 Regulatory compliance

This product complies with the essential EEA requirements for Electrical Safety and the Low Voltage Directive 2006/95/EC as well as Electromagnetic compatibility as set out in the EMC Directive 2004/108/EC.

1.3 Symbols
Before using the Invivo2 300, please ensure that you are familiar with the symbols on the Invivo2 300.

Note: The workstation should be located in a well-ventilated area.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Refer to user manual.</td>
</tr>
<tr>
<td>~</td>
<td>Alternating current</td>
</tr>
<tr>
<td>O</td>
<td>Off</td>
</tr>
<tr>
<td>I</td>
<td>On</td>
</tr>
<tr>
<td></td>
<td>Primary earth connection</td>
</tr>
<tr>
<td></td>
<td>This product complies with the essential EEA requirements for Electrical Safety and Electromagnetic compatibility as set out in the EMC directive 2004/108/EC and the Low Voltage Directive 2006/95/EC</td>
</tr>
<tr>
<td></td>
<td>Caution, do not remove covers. No end user serviceable parts behind covers. Please refer to this manual in all cases where this symbol appears, in order to find out the nature of the Potential Hazard and actions to be taken in order to avoid the Hazard.</td>
</tr>
</tbody>
</table>

Figure 1: Invivo2 300 symbols
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warning, this equipment contains high voltage circuitry.</td>
</tr>
<tr>
<td></td>
<td>Warning: Do not use toxic or Flammable substances inside the incubator.</td>
</tr>
<tr>
<td></td>
<td>Invivo2 300 contains hazardous components and must not be disposed of at a household waste site. Instead it should be taken to the appropriate collection point for the recycling of electrical and electronic equipment.</td>
</tr>
<tr>
<td></td>
<td>Date of manufacture in format YYYY MM</td>
</tr>
</tbody>
</table>

1.4 Installation and relocation

Invivo2 300 should not be installed or relocated by anyone other than a qualified engineer. To arrange installation or relocation, please contact your local distributor.
1.5 **Weight and dimensions**

The Invivo\textsubscript{2} 300 workstation weighs approximately 75kg. Figure 2 lists the dimensions of the Invivo\textsubscript{2} 300 workstation;

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2: Invivo\textsubscript{2} 300 workstation dimensions</td>
<td></td>
</tr>
<tr>
<td>External width</td>
<td>840 mm</td>
</tr>
<tr>
<td>External height</td>
<td>635 mm</td>
</tr>
<tr>
<td>External depth</td>
<td>660 mm</td>
</tr>
<tr>
<td>Workstation chamber internal width</td>
<td>535 mm</td>
</tr>
<tr>
<td>Workstation chamber internal height</td>
<td>425 mm</td>
</tr>
<tr>
<td>Workstation chamber internal depth</td>
<td>510 mm</td>
</tr>
<tr>
<td>Interlock internal width</td>
<td>150 mm</td>
</tr>
<tr>
<td>Interlock internal height</td>
<td>190 mm</td>
</tr>
<tr>
<td>Interlock internal depth</td>
<td>230 mm</td>
</tr>
<tr>
<td>Interlock outer door clear opening width</td>
<td>155 mm</td>
</tr>
<tr>
<td>Interlock outer door clear opening height</td>
<td>200 mm</td>
</tr>
<tr>
<td>Interlock inner door clear opening width</td>
<td>185 mm</td>
</tr>
<tr>
<td>Interlock inner door clear opening height</td>
<td>180 mm</td>
</tr>
</tbody>
</table>
2. Gas and electrical supply requirement

2.1 Gas supply requirements

The Invivo\textsubscript{2} 300 workstation requires;

- Oxygen free nitrogen.
- In addition to this, the Invivo\textsubscript{2} 300 workstation should be connected to IC\textsubscript{O}2N\textsubscript{2}IC (supplied with the Invivo\textsubscript{2} 300 workstation). All other gas connections should be made to the IC\textsubscript{O}2N\textsubscript{2}IC. See UM-011 IC\textsubscript{O}2N\textsubscript{2}IC user manual for more details.

The maximum permissible concentration of hydrogen in the anaerobic mixed gas is 5.5%. The use of any other gas(ses) will invalidate the warranty and may cause serious injury. The Gas supplies must be securely fastened after installation.

2.2 Gas regulator requirements

Gas regulators must be used with all gas supplies to the workstation. A 2 stage regulator must be used for each bottled gas supply. Regulators should be available from your local gas supplier. Ruskinn Technology Limited does not supply gas regulators.

The gas regulator should provide a minimum supply pressure of 3(42psi) Bar Gauge. The maximum supply pressure permissible is 4 bar gauge. A supply pressure greater than this will damage internal components of the workstation and will invalidate the warranty.

The gasses are connected to the IC\textsubscript{O}2N\textsubscript{2}IC Advanced Gas Mixer. See UM-011 IC\textsubscript{O}2N\textsubscript{2}IC user manual for more details.

2.3 Electrical supply requirements

The workstation must be connected to a mains power supply. A power cord is supplied to connect the workstation to the mains supply. Only the power cord supplied should be used to connect the workstation to the mains supply. It is advised that the workstation be located no greater than 1 metre from the plug socket. The plug socket should not be obstructed by the Invivo\textsubscript{2} 300 workstation. The workstation must be connected to a protective earth.

NOTE: If an Uninterruptable Power Supply (UPS) system is used, both the Invivo\textsubscript{2} 300 workstation and the IC\textsubscript{O}2N\textsubscript{2}IC Advanced Gas Mixer must be connected to the Uninterruptable Power Supply (UPS) system.

2.4 Voltage and frequency requirements

To ensure safe operation of the workstation, it must be connected to a supply of the correct voltage and frequency, as shown in the rating label (item 4, Figure 8). The mains supply voltage fluctuations must not exceed +/- 10% of the nominal mains voltage.

2.5 Power consumption

Figure 3 shows the power consumption ratings;

<table>
<thead>
<tr>
<th>Supply voltage and frequency</th>
<th>Power consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>240V AC, 50Hz</td>
<td>150 W</td>
</tr>
<tr>
<td>120V AC, 60Hz</td>
<td>200 W</td>
</tr>
</tbody>
</table>
Note: The power consumption is for normal operating conditions with no equipment connected to the internal power supply. Power consumption will vary dependent upon the conditions inside the workstation chamber and the conditions inside the room the workstation is located in.

2.6 Powering the workstation

To switch the workstation on, press the power switch (item 2 Figure 14).

To switch the workstation off, press the power switch (item 2 Figure 14).

Note: A glove port should be left open when the workstation is switched off, as the pressure inside the workstation will decrease as the workstation cools. The open glove port will allow the pressure inside the workstation chamber to equalise with the external pressure.
3. Workstation overview

3.1 Workstation layout
The Invivo\textsubscript{2} 300 workstation consists of 2 main areas; the workstation chamber and the interlock chamber. The workstation chamber is the main working area of the workstation. Access to the workstation chamber is provided by the glove ports, the Single Plate Entry System (SPES) and the interlock. The interlock consists of the interlock chamber, with an inner and an outer door. The Invivo\textsubscript{2} 300 workstation is controlled via the control panel. The ICO\textsubscript{2}N\textsubscript{2}IC Gas Mixer controls the gaseous composition of the internal environment. See UM-011 for more information on the ICO\textsubscript{2}N\textsubscript{2}IC Advanced Gas Mixer.

3.2 Component layout
Please familiarise yourself with the layout of your Invivo\textsubscript{2} 300 workstation.

3.2.1 Front view
Figure 4 below shows the front view of the Invivo\textsubscript{2} 300 workstation;

![Invivo\textsubscript{2} 300 workstation front view]

1. Single Plate Entry System (SPES).
2. Glove ports (shown without Ezee Sleeves).
3. Port entry selector switch.
4. Interlock inner door control panel.
5. Interlock outer door.
6. Control panel.
3.2.2 Rear view

Figure 5 shows the rear view of the Invivo2 300 workstation;

Figure 5: Invivo2 300 workstation rear view
3.2.3 Left side view – Standard humidifier
Figure 6 shows the left side view of the Invivo₂ 300 workstation with the standard humidifier;

Figure 6: Invivo₂ 300 workstation left side view

1. Pressure relief tank cover (pressure relief tank bung).
2. Pressure relief tank.
3. Pressure relief tank overflow pipe.
5. Exhaust valve outlet.
6. Vacuum line connection port (optional extra).
7. Condenser fan.
8. Single Plate Entry System (SPES).

Note: Please locate a suitable container below the tubing to collect any excess water from the overflow tube.
3.2.4 Left side view – Ultrasonic humidifier

Figure 7 shows the left side view of the Invivo2 300 workstation with the ultrasonic humidifier;

![Invivo2 300 workstation left side view with ultrasonic humidifier](image)

1. Exhaust valve outlet
2. Cable gland (optional extra)
4. Humidifier tank.
5. Pressure relief tank overflow
7. Single Plate Entry System (SPES).
8. Condenser fan.
3.2.5 Right side view

Figure 8 shows the right side view of the Invivo₂ 300 workstation;

Figure 8: Invivo₂ 300 workstation right side view

1. Mixed gas inlet.
2. Sample gas return.
3. Sample gas out.
4. Serial number label.
5. Portable Appliance Test (PAT test) label.
6. Power entry panel label.
7. Power entry panel.
3.3 Control system layout
The control system layout varies by model. Please familiarise yourself with the control system layout of your Invivo₂ 300 workstation.

3.3.1 Control panel
Figure 9 shows the control panel of the Invivo₂ 300 workstation;

1. **Power indicator.** Illuminates to indicate the workstation is connected to the mains and is switched on.
2. **Chamber light switch.** Press to switch the chamber light on / off.
3. **Gas Alarm switch.** Press to switch the gas alarm on/ off.
4. **Humidistat.** Controls the level of humidity inside the workstation chamber.
5. **Lock active indicator LED.** Flashes to indicate that the interlock purge cycle is in progress.
6. **Interlock purge button.** Press to initiate the interlock purge cycle.
7. **Gas demand indicator.** Illuminates when there is a low pressure condition inside the workstation chamber.
8. **N₂ low indicator.** Illuminates to indicate that the nitrogen supply has run out.
9. **Temperature controller.** See section 3.3.2 for more details.
3.3.2 Temperature controller
Figure 10 shows the temperature controller;

![Temperature controller diagram]

1. Not user accessible (For service personnel only)
2. Not user accessible (For service personnel only)
3. Number scrolling button. Use to move across digits. Use with buttons 4 & 5 to increase and decrease the temperature.
4. Decrease temperature (0.1°C increments) or humidity.
5. Increase temperature (0.1°C increments) or humidity.

For temperature control, the white value (PV- Process Value) is the actual temperature. The green value (SV- Set Value) is the required value (the set point). All temperatures are in °C.

For ultrasonic humidity control, the white value is the actual relative humidity and the green value the required relative humidity (the set point). All humidity’s are percentage relative humidity.

3.3.3 Port selector knob controller
Figure 11 shows the port selector knob controller;

![Port selector knob controller diagram]
3.3.4 Interlock inner door control panel
Figure 12 shows the interlock inner door control panel;

Figure 12: Interlock inner door control panel

1. Inner door LED indicator. Illuminates to indicate when the interlock inner door is available.
2. Inner door button. Press to unlock the interlock inner door (when available).

3.3.5 Foot switch control panel
Figure 13 shows the foot switch controller which is used to operate the spot light, vacuum control and interlock purge control.

Figure 13: Foot switch controller

1. VAC for glove port vacuum control
2. LOCK for interlock purge control
3. SPOT for spotlight operation
3.3.6 Power entry panel

Figure 14 shows the power entry panel and label;

Figure 14: Power entry panel

1. Mains fuse holder.
2. On/off switch.
3. Mains lead connection.
4. Nitrogen inlet
5. Primary earth stud.
6. \(\text{ICO}_2\text{N}_2\text{IC} \) Gas mixer umbilical connection.
4. Temperature and humidity control

4.1 Temperature control
The Invivo2 300 workstation can control the workstation chamber temperature between ambient plus 5°C and 45°C.

The temperature in the main chamber can be set using the temperature controller on the control panel.

4.2 Setting the temperature;
Referring to Figure 10;
- To decrease the temperature set point, press button 4.
- To increase the temperature set point, press button 5.

The temperature set point will increase or decrease in intervals of 0.1°C.

4.3 Humidity control
The Invivo2 300 workstation can control the workstation chamber humidity between ambient and 85% relative humidity.

4.3.1 Humidity control overview
There are 2 methods of humidity control on Invivo2 workstations;
- Standard
- Ultrasonic

Humidistat is the standard method of humidity control on the Invivo2 300 workstation. Ultrasonic is an optional extra. Note: Ultrasonic humidity can only be fitted at time of order; it cannot be added after manufacture of the workstation.

For Invivo2 300 workstations fitted with standard humidity, a Petri dish/tray of distilled water should be placed in the workstation chamber to provide the humidity source for the workstation chamber.

4.3.2 Humidistat humidity control
To control the humidity of the workstation chamber using the humidistat;
- To increase the humidity, rotate the humidistat clockwise.
- To decrease the humidity, rotate the humidistat anti-clockwise (counter-clockwise).

5. Environmental gas composition control
The environmental gas composition of the workstation chamber is controlled by the ICO₂N₂IC Gas Mixer. For more information, please see UM-011 ICO₂N₂IC User Manual.
6. Using the workstation chamber

6.1 Using the interlock
The Invivo2 300 workstation has a 6.5 litre interlock for transferring materials and samples into and out of the workstation chamber.

6.1.1 Interlock overview
The interlock consists of 3 main components;

- Interlock outer door
- Interlock inner door
- Interlock chamber

The interlock is accessed by opening either the outer or inner door. **Note:** Both doors should not be opened at the same time.

6.1.2 Opening the interlock outer door
To open the interlock outer door, pull the interlock door towards you using the black strip. Figure 15 shows how to open the interlock outer door;

Figure 15: Interlock outer door opening

To close the interlock outer door, push the interlock outer door shut. The door latch will click when the door is shut.

Note: Do not open the interlock outer door if the interlock inner door is open. Do not place object(s) on the interlock outer door when open, as this may damage the workstation.
6.1.3 Opening the interlock inner door
To open the interlock inner door;

- Access the workstation chamber via the Ezee Sleeves. See section 6.2.2 for details.
- Press the interlock inner door button (item 2 in Figure 12).
- Slide the interlock inner door backwards to open.

To close the interlock inner door, slide the door forwards.

Note: The interlock inner door should only be open when transferring materials from the interlock chamber to the workstation chamber and vice versa. The interlock inner door should not be opened if the interlock outer door is open.

6.1.4 Transferring material into the workstation chamber via the interlock
To transfer material into the workstation chamber via the interlock;

- Open the interlock outer door by pulling interlock door towards you using the black strip, (Figure 15).
- Pull the interlock outer door down until it is horizontal.
- Place the material into the interlock chamber. Do not place material on the interlock outer door, as this may damage the workstation.
- Close the interlock outer door.
- Start the interlock purge cycle by pressing the interlock purge button (item 6, Figure 9) or the lock foot pedal on the foot switch control panel (item 2 Figure 13). The interlock purge cycle takes 30 seconds.
- Access the workstation chamber via the Ezee Sleeves. See section 6.2.2 for details.
- When the interlock purge cycle has completed, indicated by the Lock active indicator LED (item 5 in Figure 9,) not being illuminated, press the inner door button (item 2 Figure 12).
- Slide the interlock inner door backwards to open the interlock door.
- Move the material from the interlock chamber into the workstation chamber.
- Close the interlock inner door by sliding the interlock inner door forward.

6.1.5 Removing material from the workstation chamber via the interlock
To remove material from the workstation chamber via the interlock;

- Open the interlock inner door by pressing the inner door button (item 2 Figure 12) and sliding the interlock inner door backwards.
- Move the material from the workstation chamber into the interlock chamber.
- Close the interlock inner door by sliding the interlock inner door forwards.
- Exit the workstation chamber via the Ezee Sleeves. See section 6.2.3 for details.
- Open the interlock outer door by pulling interlock door towards you using the black strip (Figure 15). Pull the interlock outer door down until it is horizontal.
- Remove the material from the interlock chamber. Do not place material on the interlock outer door, as this may damage the workstation.
- Close the interlock outer door.
6.2 Hand access to the main chamber
Direct hand access to the workstation chamber is provided via the glove ports and the Ezee Sleeve system. The Ezee Sleeves provide direct bare hand (or gloved) access to the workstation chamber.

The glove ports and Ezee Sleeves can be used in 3 ways;

- Left hand glove port only, for loading items into the workstation chamber via the Single Plate Entry System (SPES).
- Both glove ports, for working inside the workstation chamber, loading items into the workstation chamber via the SPES and unloading the interlock.
- Right hand glove port only, for unloading the interlock.

For each method of entry, the glove port selector switch (Figure 11) must be set in the correct position. Figure 16 shows the positioning of the glove port selector knob for each mode of operation;

Figure 16: Glove port selector knob positioning

![Port Entry Selector Diagram]

6.2.1 Ezee Sleeve overview
The Ezee Sleeves consists of a sleeve and a cuff. There are 3 sizes of Ezee Sleeve available; small, medium and large. See section 7.4.2 for ordering details.

The sleeve attaches to the glove port via 2 O-rings. The cuff is then attached to the sleeve via an O-ring. Note that the workstation should not be used without the Ezee Sleeves attached.
6.2.2 Entering the workstation chamber using the Ezee Sleeves

To enter the workstation via the Ezee Sleeves:

- Set the glove port selector switch (Figure 11) to the correct position for the desired hand entry (Figure 16).
- Hold the desired Ezee Sleeve cuff with the opposite hand.
- Supporting the Ezee Sleeve cuff, push the desired hand through the cuff of the Ezee Sleeve Figure 17 shows this procedure;

![Figure 17: Entering the cuffs of the Ezee Sleeves](image)

- Repeat the procedure for the other hand (if both hands are to enter the workstation chamber).
- Press and hold the vacuum pedal with your foot (item 1 in Figure 13) until the internal gas volume in the sleeves has been evacuated (the sleeves will now be tight around your arms), then remove your foot from the vacuum pedal.
- Unscrew the glove port cover knob by turning it anti-clockwise (counter-clockwise).
- Rotate the glove port bar until it is horizontal.
- Whilst holding the glove port cover knob, push the glove port cover and your hand into the workstation chamber slowly.
- Place the glove port cover in the glove port cover holder. Figure 18 shows the glove port cover holder;
6.2.3 Exiting the workstation chamber using the Ezee Sleeves
To exit the workstation chamber using the Ezee Sleeves;

- Remove the glove port cover from the glove port cover holder (Figure 18).
- Holding the glove port cover by the glove port cover knob, slowly pull the glove port cover into the glove port with the glove port bar horizontal.
- Rotate the glove port bar inside the glove port so that it is vertical.
- Tighten the glove port cover knob. Do not over tighten the glove port cover knob.
- Supporting the Ezee Sleeve cuff with your opposite hand, pull your hand through the cuff of the Ezee Sleeve.
- Repeat for the opposite hand if required.

6.2.4 Arm gas displacement volume and pressure changes
When entering or exiting the workstation chamber via the Ezee Sleeves, the internal volume of the workstation chamber changes due to the displacement of your arms. The change in volume changes the internal pressure. To minimise the effect of the pressure change, enter and exit the workstation chamber slowly.
6.3 Single Plate Entry System (SPES)
A SPES is provided for quick and easy direct access to the workstation chamber, for loading materials. The SPES is also known as the mailbox.

6.3.1 SPES overview
The SPES consists of an external hinged flap and an internal hinged flap. The external flap is held in place by a thumb screw when not in use. The internal flap is self-closing. Figure 19 shows the external view of the SPES;

![Figure 19: SPES external view](image)

1. Thumb screw.
2. SPES external flap.

Figure 20 shows the internal view of the SPES;

![Figure 20: SPES internal view](image)

6.3.2 Using the SPES
To use the SPES;

- Undo the thumb screw on the external flap (item 1 in Figure 19)
- Whilst supporting the SPES external flap, swing the thumb screw to the left.
- Lower the SPES external flap.

Figure 21 shows the SPES when opened;

![Figure 21: SPES with external hinged flap opened](image)

- Push materials through the SPES internal flap into the workstation chamber. This should be done as quickly as possible to minimise gas loss from the workstation chamber.
- When all materials have been added, lift the SPES external flap back to its closed position.
- Whilst holding the SPES external flap, swing the thumb screw right to slot into the SPES external flap.
- Tighten the thumb screw.

Note: Do not over tighten the thumb screw. Note also that it may be easier to have your right hand in the left hand Ezee Sleeve if loading multiple items.

6.4 Internal power socket

An internal power socket is provided within the workstation chamber. The socket is located on the left hand side, underneath the rear shelf.

The maximum permissible power rating of equipment connected to the internal socket is shown in Figure 22.

![Figure 22: Internal socket power ratings](chart)

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>Power rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>120V AC, 60Hz</td>
<td>85W</td>
</tr>
<tr>
<td>240V AC, 50 Hz</td>
<td>190W</td>
</tr>
</tbody>
</table>

6.5 Internal lights

2 internal lighting systems are provided for the workstation chamber;
Main chamber light.

Spot light.

To switch the main chamber light on, press the chamber light switch (item 2 in Figure 9).

To switch the main chamber light off, press the chamber light switch (item 2 in Figure 9).

To switch the spotlight on, press and hold the spot pedal on the foot switch control panel (item 3 in Figure 13). To switch the spotlight off, remove your foot from the spot pedal on the foot switch control panel (item 3 in Figure 13).

Note: The spot light should not be used continuously for a period of more than 10 minutes, as this will cause the spot light to overheat. The spot light should be allowed to cool for a period of 10 minutes after each use.

6.6 Rear shelf

The Invivo2 300 workstation has a rear shelf for additional storage within the workstation chamber. The weight limit for the shelf is 5.5kg. The weight on the shelf must be evenly distributed.
6.7 Optional extras

The Invivo\textsubscript{2} 300 workstation may be fitted with optional extra parts to provide added functionality. The available optional extra parts for Invivo\textsubscript{2} 300 workstations are:

- Cable gland port.
- Universal gland port.
- Gas sample port.
- Ultrasonic humidity control.
- Vacuum port.

Note: These parts are not available as aftermarket upgrades; they must be fitted during the manufacture of the workstation.

6.7.1 Cable gland

The cable gland is used to allow cables to enter the workstation chamber without affecting the internal environment of the workstation chamber. The cable gland is suitable for cables of diameter 3.5mm to 7mm. The cable gland port is located on the left hand side as shown in Figure 6, item 3.

Figure 23 shows the cable gland;

![Figure 23: Cable gland](image)

To use the cable gland port:
- Turn the grey collar anti-clockwise (counter-clockwise) to loosen the cable gland.
- Remove the red plug.
- Push the cable through the cable gland port.
- Tighten the grey collar by turning clockwise until tight. Do not over tighten the cable gland.

6.7.2 Universal cable gland

The Universal cable gland is used to allow cables to enter the workstation chamber without affecting the internal environment of the workstation chamber. The Universal cable gland provides a diameter of 50mm for passing through larger cables and connectors. The Universal cable gland is located on the rear of the workstation.

![Figure 24: Multi port](image)
6.7.3 Gas sample port

The gas sample port can be used to collect a gas sample from the workstation chamber. To use the gas sample port:

- Remove the outer cap.
- Push a needle connected to a syringe through the internal sponge of the gas sample port.
- Pull back the syringe to withdraw a sample of gas.
- Remove the needle from the internal sponge of the gas sample port.
- Replace the outer cap.

![Figure 25: Gas Sample Port](image)

6.7.4 Vacuum port

The vacuum port is used to remove liquids from the workstation chamber, for example excess media from Petri dishes. The vacuum port is located on the left hand side of the workstation.

To use the vacuum port:

- Connect the vacuum source to the external part of the vacuum port by pushing a tube from the vacuum source onto the vacuum port hose connection.
- Insert the internal vacuum hose into the internal section of the vacuum port. Figure 26 shows the internal part of the vacuum port;

![Figure 26: Internal part of vacuum port](image)

- When the vacuum is no longer required, remove the internal vacuum hose from the vacuum port by pressing the top of the metal part of the internal section of the vacuum port and pulling the vacuum hose. The hose should release from the vacuum port, sealing the vacuum port.
- Remove the vacuum source from the outside of the vacuum port.
6.8 Online video user guides

Further information and demonstrations can be found at Ruskinn Technology Limited’s YouTube channel;

http://www.youtube.com/ruskinntechnology

Video demonstrations are available for;

- Entering and exiting the workstation chamber via the Ezee Sleeves.
- Setting oxygen and carbon dioxide values.
- Using the JuLI fluorescent cell image analyser.
7. Cleaning and maintenance

7.1 Cleaning the workstation

To ensure that your Invivo₂ 300 workstation remains at optimum working conditions, it must be cleaned on a regular basis. A basic clean is required after each use. Deep cleaning is required at regular intervals, dependent upon the nature of the materials used in the workstation. As a guide, a deep clean should be performed at between 3-6 month intervals.

7.1.1 Cleaning agents

The correct cleaning agents must be used to clean the workstation. The use of incorrect cleaning agents will damage the workstation and invalidate the warranty. The following cleaning agents are permitted:

- Ethanol, laboratory grade at a maximum concentration of 70% by volume ethanol in distilled water.
- Propanol, laboratory grade at a maximum concentration of 70% by volume propanol in distilled water.
- Tristel Fuse Sachet, 1 sachet diluted in 3 litres of distilled water, or Tristel Duo Foamer. Tristel Fuse Sachets and Duo Foamer are available from Ruskinn Technology Limited, see section 7.4.2 for details.
- Ruskinn Technology Limited anti-static cleaner.
- Distilled water.

No other cleaning agents are permitted. Cleaning agents should be applied to a clean paper towel and then to the workstation, then removed using a clean paper towel. Cleaning agents should not be sprayed directly onto the workstation, as this may damage the shell of the workstation. The use of UV light is not permitted in the workstation, as it will damage the acrylic shell.

Note: Where 3rd party instruments or apparatus are used within the workstation, please refer to the applicable manufacturers for guidance on approved cleaning agents. If these cleaning agents are not listed above, please remove the instrument or apparatus from the workstation to undertake cleaning to prevent damage to the workstation or 3rd party instrument / apparatus

7.1.2 Cleaning procedure – during and after each use

During use, clean any spills immediately using paper towels soaked in an appropriate cleaning agent. Wipe dry using a dry paper towel.

After each use;

- Remove all waste materials from the workstation chamber.
- Wipe the workstation chamber floor tray using paper towels soaked an appropriate cleaning agent.
- Wipe the workstation chamber floor tray clean using paper towels to dry.
- Wipe the interlock floor using paper towels soaked in an appropriate cleaning agent.
- Wipe the interlock floor using paper towels to dry.

Note: It is easiest to clean the interlock from the outside.
7.1.3 Cleaning procedure – deep clean
To deep clean the workstation;

Preparing the workstation

- Return the CO₂:N₂:IC to the main menu (see UM-011 for more information).
- Remove all cells/samples to an alternative storage facility.
- Switch the workstation off at the mains and remove the plug from the mains.
- Remove the Ezee Sleeves (see section 0, for more details).
- Remove any other equipment installed in the workstation chamber.

Cleaning the workstation chamber

- The items inside the workstation chamber that require cleaning are;
 - The floor tray.
 - The ceiling panel.
 - The shelf panel.
 - The left hand wall.
 - The right hand wall.
 - The interlock inner door.
 - The inside of the SPES.
 - The glove port covers.
- For all workstation components, wipe with a paper towel soaked in an appropriate cleaning agent. Take care not to get cleaning agents on the fans (below the inner rear wall), plug socket and the interlock inner door control panel.
- Wipe dry using paper towels.

Cleaning the interlock chamber;

- The items inside the interlock chamber that require cleaning are;
 - The floor.
 - The ceiling panel.
 - The rear wall.
 - The right hand wall.
 - The interlock inner door.
- For all workstation components, wipe with a paper towel soaked in an appropriate cleaning agent. Take care not to get cleaning agents on the interlock heating mat (below the interlock floor). Note the interlock floor can be removed for cleaning.
- Wipe dry using paper towels.

Reinstalling workstation components

- Reinstall any equipment removed from the workstation chamber.
- Reinstall the Ezee Sleeves (see section 0, for more details).
7.2 Maintaining the workstation – End user maintenance

To ensure that your Invivo 300 workstation remains at optimum working conditions, it must be maintained on a regular basis. Many basic tasks can be performed by the end user.

7.2.1 Filling the pressure relief/ humidifier tank

The pressure relief/ humidifier tank requires refilling if the water level is on or below the low level indication. Figure 27 shows the pressure relief/ humidifier tank level indicator;

Figure 27: Pressure relief/ humidifier tank level indicator

To refill the pressure relief/ humidifier tank;

- Return the ICO2N2IC to the main menu screen (see UM-011 for more information).
- Either open the SPES (see section 6.3.2,) or open one of the glove port covers (see section 6.2.2), to equalise the pressure between the workstation chamber and the external environment.
- Remove the pressure relief tank cover/ humidifier screw cap.
- Top up the pressure relief/ humidifier tank until the water level is between the low and high level indicators.
- Replace the pressure relief tank cover/ humidifier screw cap.
- Either close the SPES or close the glove port cover.
- Set the ICO2N2IC to the desired mode of operation (see UM-011 for more information).

Note: Only distilled or deionised laboratory grade water should be used. Gloves should be worn during refilling to avoid contaminating the humidifier tank. The humidifier tank should be refilled slowly and only up to the high level indicator. Do not overfill the humidifier tank.
7.2.2 Replacing an Ezee Sleeve

To remove an Ezee Sleeve;

- Ensure that the glove port covers are closed.
- Remove the O-rings that hold the Ezee Sleeve to the glove port. **Note:** The O-rings will be tight. Figure 28 shows the O-ring removal;

![Figure 28: O-ring removal](image)

- Remove the Ezee Sleeve.

To install an Ezee Sleeve;

- Place the new Ezee Sleeve onto the glove port, ensuring that the O-ring grooves are completely covered and that the Ezee Sleeve is not kinked or overlapping.
- Reinstall the O-rings over the Ezee Sleeve.

Note: The O-rings will be a tight fit. This is intentional, to provide a gas tight seal.

Note: The O-rings must completely cover the Ezee Sleeve to provide a gas tight seal.
7.2.3 Replacing detox sachets

Detox sachets are supplied with the Invivo₂ 300 workstation. The detox sachets adsorb volatile organic compounds, improving the air quality within the workstation chamber. Detox sachets need to be replaced annually. See section 7.4.2 for ordering details.

To replace the detox sachets:

- Remove any samples to an alternative storage facility.
- Return the ICO₂N₂JC to the main menu.
- Switch off Invivo₂ 300 and disconnect from the mains power supply.
- Remove the Ezee Sleeves (see section 0 for more information).
- Undo the glove port covers and place on the rear shelf.
- Lift the floor tray at the front to expose the detox sachets. Figure 29 shows the location of the sachet holders;

![Figure 29: Sachet holder location](image)

1. Floor tray.
2. Sachet holder. The second sachet holder is located behind and to the left of the first sachet holder.
3. Floor tray locator.

- Slide the sachets forwards to remove them from their holders.
- Remove the sachets via the glove ports.
- Lower the floor tray, ensuring that the floor tray leg has located in the floor tray locator (item 3 in Figure 29).
- Remove the new sachets from their packaging.
- Whilst lifting the floor tray at the front, slide the sachets into the sachet holder.
Invivo₂ 300

- Lower the floor tray, ensuring that the floor tray leg has located in the floor tray locator (item 3 in Figure 29).
- Close the glove ports using the glove port covers.
- Reinstall the Ezee Sleeves (see section 0 for more details).
- Reconnect the Invivo₂ 300 to the mains power supply and switch the Bugbox Plus on.

7.2.4 Installing/ replacing a catalyst sachet

Catalyst sachets are available as an accessory for the Invivo₂ 300 workstation. See section 7.4.2 for ordering details. The catalyst sachets are only required for anaerobic operation of the workstation. Anaerobic mode is an optional extra for the ICO₂N₂IC gas mixer.

To install a catalyst sachet:

- Remove any samples to an alternative storage facility.
- Return the ICO₂N₂IC to the main menu.
- Switch off Invivo₂ 300 and disconnect from the mains power supply.
- Remove the Ezee Sleeves (see section 0 for more information).
- Undo the glove port covers and place on the rear shelf.
- Lift the floor tray at the front to expose the detox sachets.
- Slide a sachet forward to remove it from its holder.
- Remove the sachet via the glove port.
- Lower the floor tray, ensuring that the floor tray leg has located in the floor tray locator (item 3 in Figure 29).
- Remove the catalyst sachet from its packaging.
- Whilst lifting the floor tray at the front, slide the catalyst sachet into the sachet holder.
- Lower the floor tray, ensuring that the floor tray leg has located in the floor tray locator (item 3 in Figure 29).
- Close the glove ports using the glove port covers.
- Reinstall the Ezee Sleeves (see section 0 for more details).
- Reconnect the Invivo₂ 300 to the mains power supply and switch on the Invivo₂ 300.
7.2.5 Replacing the mains plug fuse – UK users only

To replace the mains plug fuse;

- Remove the plug from the mains socket.
- Using a small flat bladed screw driver, remove the fuse cover from the mains plug. Figure 30 shows the fuse removal;

Figure 30: Mains plug fuse removal

- Replace the fuse with a BS 1362 13A fuse, to match the original fuse.
- Replace the plug in the mains socket.
- Reconnect Invivo₂ 300 to the mains power supply and switch the Invivo₂ 300 on.
7.2.6 Replacing the mains fuses

To replace the mains fuses:

- Switch off the Invivo2 300.
- Remove the plug from the mains socket.
- Remove the mains fuse drawer using a small flat bladed screwdriver. Figure 31 shows the removal of the mains fuse holder;

Figure 31: mains fuse holder removal

- Replace the mains fuses. The fuse ratings are;
 - 240V 50Hz – F3.15A H250V
 - 220V 60Hz – F3.15A H250V
 - 110V 60Hz – F5A H250V
 - 100V 50/60Hz – F5A H250V

Fuses should be fast blow, for example Cooper Bussmann SS01. For more information, contact your local distributor.

- Replace the mains fuse holder. The fuse holder will click when it is fully inserted.
- Replace the plug in the mains socket.
- Switch on the Invivo2 300.
7.3 Service requirements
To maintain the best performance from your Invivo2 300 workstation, it must be serviced at regular intervals. Figure 32 lists the servicing requirements, intervals and persons capable of performing the service;

Figure 32: Invivo2 300 servicing requirements

<table>
<thead>
<tr>
<th>Action</th>
<th>Frequency</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean workstation</td>
<td>After each use</td>
<td>End User</td>
</tr>
<tr>
<td>Fill humidifier tank</td>
<td>Weekly</td>
<td>End User</td>
</tr>
<tr>
<td>Deep clean workstation</td>
<td>3-6 months depending on usage</td>
<td>End User</td>
</tr>
<tr>
<td>Replace detox sachets</td>
<td>Annually</td>
<td>End User</td>
</tr>
<tr>
<td>Replace catalyst sachet (if used)</td>
<td>Annually</td>
<td>End User</td>
</tr>
<tr>
<td>Annual service</td>
<td>Annually</td>
<td>Qualified service engineer</td>
</tr>
<tr>
<td>Biennial service</td>
<td>Biennially (2 yearly)</td>
<td>Qualified service engineer</td>
</tr>
</tbody>
</table>

To arrange an annual or biennial service, contact your local distributor. Note that the biennial service includes an annual service. Note: The annual service includes the replacement of detox sachets.

Service contracts are available for all Ruskinn Technology Limited workstations. Please contact your local distributor for more information.

7.4 Spare parts and accessories
A range of spare parts and accessories are available for your Invivo2 300 workstation. Note: Only Ruskinn Technology Limited spare parts should be used. The use of unapproved spare parts will invalidate the warranty of your workstation and may cause damage to your workstation.

7.4.1 Overview
To order spare parts and accessories, please contact your local distributor for the latest pricing and availability.
7.4.2 Spare parts and cleaning agents
Figure 33 lists the spare parts and cleaning agents available for your Invivo\textsubscript{2} 300 workstation. To order spare parts, please contact your local distributor for the latest pricing and availability. All items are sold individually except where stated.

Figure 33: Invivo\textsubscript{2} 300 end user spare parts and cleaning agents list

<table>
<thead>
<tr>
<th>Part</th>
<th>Where used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Ezee Sleeve (Pair)</td>
<td>Ezee Sleeve</td>
</tr>
<tr>
<td>Medium Ezee Sleeve (Pair)</td>
<td>Ezee Sleeve</td>
</tr>
<tr>
<td>Large Ezee Sleeve (Pair)</td>
<td>Ezee Sleeve</td>
</tr>
<tr>
<td>Glove port seal plate assembly</td>
<td>Glove ports</td>
</tr>
<tr>
<td>Sleeve to port O-ring</td>
<td>Ezee Sleeve</td>
</tr>
<tr>
<td>Port Lube Talc</td>
<td>Ezee Sleeve</td>
</tr>
<tr>
<td>Mains lead (2)</td>
<td>Mains lead</td>
</tr>
<tr>
<td>Anti static cleaner (600ml)</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Tristel Duo Foamer</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Tristel Fuse Sachet</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Small Detox Sachet</td>
<td>VOC filtration</td>
</tr>
<tr>
<td>Small Catalyst Sachet</td>
<td>Anoxic operation</td>
</tr>
<tr>
<td>Anaerobic Indicator Strips</td>
<td>Anoxic operation</td>
</tr>
</tbody>
</table>

7.4.3 Accessories
A range of accessories are available to enhance the functionality of your Invivo\textsubscript{2} 300 workstation. Figure 34 is the list of accessories for the Invivo\textsubscript{2} 300 workstation. Please contact your local distributor for the latest pricing and availability.

Figure 34: Invivo\textsubscript{2} 300 accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G100/1 G100 Geotech CO\textsubscript{2} Analyser</td>
<td>Independent meter for measuring the Carbon Dioxide concentration in the workstation chamber</td>
</tr>
<tr>
<td>G100/2 G100 Geotech CO\textsubscript{2} and O\textsubscript{2} Analyser</td>
<td>Independent meter for measuring the Carbon Dioxide and Oxygen concentration in the workstation chamber</td>
</tr>
<tr>
<td>Small Petri dish holder</td>
<td>Holds up to 7 9cm Petri dishes for easier storage inside the workstation chamber. 3 colours available;</td>
</tr>
<tr>
<td></td>
<td>White</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td></td>
<td>Blue</td>
</tr>
<tr>
<td>Small stand</td>
<td>The workstation can be located on the stand where bench space is not available. 2 models are available, either with fixed feet or mounted on castors. Stand height approximately 800mm</td>
</tr>
<tr>
<td></td>
<td>Stand with fixed feet</td>
</tr>
<tr>
<td></td>
<td>Stand with castors</td>
</tr>
</tbody>
</table>
7.5 Workstation malfunction

In the event of a workstation malfunction, please check section 7.6.1 for a list of common problems and solutions. If you cannot find a solution to your problem, please contact your local distributor, quoting the serial number of your workstation. If the problem is related to the ICO₂N₂IC, please contact your local distributor. The event log will be required to diagnose problems (see UM-011 ICO₂N₂IC user manual for more details).

7.6 Common problems and solutions

7.6.1 Workstation general problems

Figure 35 gives a list of common problems and solutions. Please consult this list as a first reference in the event of a malfunction of your workstation.

Figure 35: Common problems and solutions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The workstation will not switch on</td>
<td>The workstation is not plugged in</td>
<td>Plug the workstation into the mains.</td>
</tr>
<tr>
<td></td>
<td>The mains socket is not switched on</td>
<td>Switch the mains power on.</td>
</tr>
<tr>
<td></td>
<td>The mains plug fuse has blown</td>
<td>UK users: Replace the mains plug fuse. See section 7.2.3, for more details.</td>
</tr>
<tr>
<td></td>
<td>The mains fuse has blown</td>
<td>Replace the mains fuses. See section 7.2.6, for more details.</td>
</tr>
<tr>
<td>The LED indicators are not illuminating</td>
<td>24V power supply fuse has blown</td>
<td>Contact your local distributor</td>
</tr>
<tr>
<td>Devices plugged into the internal socket are not powering up</td>
<td>The power switch on the device is not switched on</td>
<td>Turn the power switch on the device on</td>
</tr>
<tr>
<td></td>
<td>The plug for the device is not fully inserted into the socket</td>
<td>Check that the plug is correctly inserted into the socket</td>
</tr>
<tr>
<td></td>
<td>The fuse in the device has blown and/ or the device has failed</td>
<td>Plug another device into the internal socket to check the operation of the internal socket. If the fuse has failed in the device, the additional device should operate when plugged into the internal socket.</td>
</tr>
<tr>
<td></td>
<td>The internal socket fuse has blown</td>
<td>Contact your local distributor</td>
</tr>
</tbody>
</table>
7.6.2 Interlock problems

Figure 36 gives a list of common interlock problems and solutions;

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The interlock inner door will not close</td>
<td>The interlock inner door is blocked</td>
<td>Check for obstructions to closing the interlock inner door and remove them</td>
</tr>
<tr>
<td></td>
<td>The interlock is purging</td>
<td>Wait for the interlock purge cycle to finish</td>
</tr>
<tr>
<td></td>
<td>The interlock inner door is stuck</td>
<td>Spillages can cause the interlock inner door to stick. Clean the interlock inner door. See section 7.1.2 / 7.1.3, for more details</td>
</tr>
<tr>
<td></td>
<td>The interlock inner door is stuck</td>
<td>Press the inner interlock door release button and pull the inner interlock door handle to release the door from the seal. Apply a small amount of port Lube Talc to the inner interlock door seal.</td>
</tr>
<tr>
<td>The interlock outer door will not close</td>
<td>The interlock outer door is obstructed</td>
<td>Check for obstructions to closing the interlock outer door and remove them</td>
</tr>
<tr>
<td></td>
<td>The interlock outer door catch has broken</td>
<td>Contact your local distributor</td>
</tr>
</tbody>
</table>
7.6.3 Gas mixer and gas consumption problems
The Invivo 300 workstation is fitted with a gas demand indicator (item 7 in Figure 9). When the gas demand indicator is illuminated, the pressure is low in the workstation chamber. A shot of gas will be injected into the workstation to raise the pressure in the workstation chamber. In normal operation, the gas demand indicator should not illuminate more than once every 20 minutes when the workstation is at rest. At rest is defined as the gasses are within Deadband and glove ports and SPES are closed. Figure 37 gives a list of common problems related to the gas mixer and gas consumption;

<table>
<thead>
<tr>
<th>Problem</th>
<th>Potential Causes</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The gas demand indicator illuminates more than once every 20 minutes whilst at rest/ high gas consumption</td>
<td>The Ezee Sleeves are not correctly installed</td>
<td>Check the Ezee Sleeves are correctly installed. See section 0 for more details</td>
</tr>
<tr>
<td></td>
<td>The glove port cover is not correctly closed</td>
<td>Check the glove port cover is in place and closed correctly. Reclose the glove port cover if required</td>
</tr>
<tr>
<td></td>
<td>The cuff is not tight around the users wrist</td>
<td>Ensure that the correct size Ezee Sleeve is used. Ensure that the cuff is pulled tight around the wrist. Roll up sleeves of clothing and remove jewellery</td>
</tr>
<tr>
<td></td>
<td>The humidifier tank is empty</td>
<td>Refill the humidifier tank. See section 7.2.1, for more details</td>
</tr>
<tr>
<td></td>
<td>A gas cylinder is empty</td>
<td>Check the ICO₂N₂IC gas mixer screen to see which gas cylinder is empty. An empty cylinder will be indicated by a low pressure status. Replace the gas cylinder with a full cylinder</td>
</tr>
<tr>
<td></td>
<td>The interlock inner and outer doors are open at the same time</td>
<td>Close either the interlock inner door or the interlock outer door</td>
</tr>
<tr>
<td></td>
<td>The SPES has been left open</td>
<td>Close the SPES. See section 6.3 for more details</td>
</tr>
<tr>
<td></td>
<td>The workstation has developed a leak</td>
<td>Contact your local distributor</td>
</tr>
</tbody>
</table>

In anoxic level mode, the oxygen concentration does not reach 0.0%
There is no catalyst sachet installed
The catalyst sachets need replacing
Install a catalyst sachet. See section 7.2.4 for more details.
Replace the catalyst sachets. See section 7.2.4 for more details.

The gas mixer alarm is sounding
A gas cylinder is empty
Check the ICO₂N₂IC gas mixer screen to see which gas cylinder is empty. An empty cylinder will be indicated by a low pressure status. Replace the gas cylinder with a full cylinder

For all other ICO₂N₂IC Gas Mixer related problems, please refer to UM-011 ICO₂N₂IC user manual.
Invivo₂ 300

8. Warranty information
Ruskin Technology Limited warrants for the applicable time period that the Invivo₂ 300 will substantially perform in accordance with the user documentation. The terms of this Agreement do not affect or prejudice the statutory rights of a consumer acquiring the Ruskin Technology Limited Invivo₂ otherwise than in the normal course of a business.

THIS WARRANTY DOES NOT APPLY IN THE FOLLOWING CIRCUMSTANCES:

(A) IF THE Ruskin Technology Limited Invivo₂ 300 HAS BEEN REPAIRED BY PERSONS NOT AUTHORIZED BY Ruskin Technology Limited; OR

(B) THE Ruskin Technology Limited Invivo₂ 300 and associated accessories/peripherals HAVE BEEN ALTERED, MODIFIED, OR MISUSED; OR

(C) THE Ruskin Technology Limited Invivo₂ 300 IS USED WITH NON- Ruskin Technology Limited COMPONENTS; OR

(D) THE Ruskin Technology Limited Invivo₂ 300 OR A COMPONENT IS USED FOR OTHER USES (FOR EXAMPLE USE WITH OTHER CIRCUIT BOARDS OR SOFTWARE) OR

(E) THE Ruskin Technology Limited Invivo₂ 300 HAS NOT BEEN MAINTAINED OR USED IN ACCORDANCE WITH THE INSTALLATION AND USER GUIDE. UNLESS PROHIBITED BY LAW, THIS WARRANTY IS MADE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, THE IMPLIED WARRANTY OF MERCHANTABILITY, OR ANY IMPLIED WARRANTY ARISING OUT OF A COURSE OF DEALING OR OF PERFORMANCE, CUSTOM OR USAGE OF TRADE. Ruskin Technology Limited DOES NOT WARRANT THAT THE Ruskin Technology Limited Invivo₂ 300 WILL FUNCTION ERROR FREE.

If within the Warranty Period, the Ruskin Technology Limited Gas Mixing Station does not conform to the express warranty set forth above, Ruskin Technology Limited’s sole obligation and Users sole remedy shall be, at Ruskin Technology Limited’s option: 1. to repair or replace the non-conforming component; or, 2. refund the purchase price.

LIMITATION OF LIABILITY.

UNLESS PROHIBITED BY LAW, Ruskin Technology Limited WILL NOT BE LIABLE TO USER OR OTHERS FOR ANY OTHER DIRECT, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR SPECIAL DAMAGES INCLUDING, FOR EXAMPLE, LOST PROFITS, BUSINESS, INVESTMENTS, OR OPPORTUNITIES EVEN IF Ruskin Technology Limited HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The parties agree that Ruskin Technology Limited total cumulative liability to User for direct damages for all causes under this Agreement shall not exceed £5,000,000 (FIVE MILLION UK STERLING POUNDS), or the price paid for the Ruskin Technology Limited Invivo₂ 300, whichever is higher. Some states or countries may have laws which require liability rights different from those stated above. In such states or countries, the minimum required liability terms shall apply.
9. Disposal information

Invivo₂ 300 contains hazardous components and must not be disposed of at a household waste site. Instead it should be taken to the appropriate collection point for the recycling of electrical and electronic equipment. Alternatively, please contact your local distributor for disposal instructions.

Invivo₂ 300 contains recyclable parts. Please contact your local distributor for more advice.
10. Contact details

Ruskinn Technology Limited

Address: 8 York Park,
Bridgend Industrial Estate
Bridgend CF31 3TB
United Kingdom

Phone: +44 (0)1656 645988
Fax: +44 (0)1656 667966

Email: Sales: sales@ruskinn.com
Technical support: techsupport@ruskinn.com
General enquiries: ruskinnoffice@ruskinn.com

Website: www.ruskinn.com
YouTube channel: http://www.youtube.com/ruskinntechnology

Ruskinn Technology Limited is a registered company in United Kingdom, company number 05692599
Ruskinn Technology Limited is VAT registered in United Kingdom, VAT number 870194126
Ruskinn Technology Limited is a wholly owned subsidiary of the Baker Company